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We propose numerical simulations of longitudinal magnetoconductance through a finite antidot lattice lo-
cated inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is
connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal
magnetoconductance and the generation of transversal couplings between the induced open quantum dots in
the system. The system presents longitudinal magnetoconductance maps with crossovers �between transversal
bands� and closings �longitudinal decoupling� of fundamental quantum states related to the open quantum dots
induced by the antidot lattice. A relationship is observed between the distribution of antidots and the formed
conductance bands, allowing a systematic follow up of the bands as a function of the applied magnetic field
and quantum point-contact width. We observed a high conductance intensity �between n and �n+1� quantum of
conductance, n=1,2 , . . .� in the regions of crossover and closing of states. This suggests transversal couplings
between the induced open quantum dots of the system that can be modulated by varying both the antidots
potential and the quantum point-contact width. A new continuous channel �not expected� is induced by the
variation in the contact width and generate Fano resonances in the conductance. These resonances can be
manipulated by the applied magnetic field.
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I. INTRODUCTION

The low-dimensional systems based in two-dimensional
electron gases have lead to an explosion of experimental
studies of new phenomena in which the quantum wave na-
ture of electrons plays an essential role. In the mesoscopic
systems, in which the electron transport is confined to one or
two dimensions, interesting effects related to the combina-
tion of fundamental constants of nature are still studied. As
examples, we can mention the quantum Hall effect1,2 and the
conductance quantization.3,4 To understand the mechanics of
quantum interference that controls these effects as a function
of the magnetic field,5,6 the use of electrostatic confinement
through metallics gates7 devices as quantum wire8,9 �QW�,
quantum point contacts10,11 �QPCs�, and open quantum
dots12,13 �OQDs� are adequate. In this context, the combina-
tion of electrostatic and magnetic confinement results in an
elegant and useful form to manipulate the quantum interfer-
ence of the electronic states.

An antidot lattice, or artificial crystal,14,15 represents an
interesting and versatile laboratory in which we may be able
to induce different transport regimes by modifying the lattice
characteristics and the external applied fields. The investiga-
tions in the field of magnetoelectronic transport in two-
dimensional antidot lattice systems �ballistic� are mostly re-
lated to one of the following topics: �i� studies on the
quantum-classical limit and its relation to quantum
chaos,16–19 which is mainly focused on the study of electrons
dynamics associated with classical orbits or scars wave
functions,20–22 and �ii� studies about the manipulation of the
electronic-transport regimes,6,23–25 such as electronic local-
ization effects, conductor-insulator transition, surface states,
and quantum Hall effect. In general, these phenomena can be
induced by the manipulation of quantum interference effects
using different lattice geometries, shapes, sizes, and number

of the antidots, or due to the intensity variation in the applied
external fields.26–29

Another way to study the relation between the electronic
states and the conductance in low-dimensional systems is
through conductance graphics as a function of the total en-
ergy and magnetic field. In a QW a “three-dimensional but-
terfly” is observed.30 This representation summarizes a num-
ber of well-known facts about magnetotransport with the
quasi-Landau levels defining the conductance plateaus fron-
tiers. The projection of the conductance in the energy-
magnetic field plane result in the Hofstadter butterfly.31 If an
antidot lattice is now considered inside the QW region, the
electrostatic confinement potential of the antidots generate a
discretization of the available quasi-Landau bands �conduc-
tance plateaus in the three-dimensional butterfly�. It occurs
because in this situation, the discrete states associated with
the OQDs induced by the antidot lattice govern the electronic
quantum transport through the system.32

On the other hand, not much attention was given to the
relationship between the crossover and closing of the in-
duced electronic states with the magnetoconductance inten-
sity variation, which can give useful information about the
longitudinal and transverse transport through the system.
This is very important if we want to understand, for example,
the regime of quantum Hall effect. The purpose of this paper
is to discuss the longitudinal and transverse couplings be-
tween the electronic states of the system �associated with the
induced OQDs� when we vary the antidot lattice potential
and the QPCs width that connected to reservoirs in the pres-
ence of an applied magnetic field. Also, it is important to be
able to identified these transverse couplings in the longitudi-
nal conductance maps. We suggest along the work some
transverse coupling fingerprints that can be directly observed
from the experimental data. As a consequence of the system-
atic analysis performed in this work, we have observed a non
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expected continuous channel in our conduction maps simu-
lations, this one being responsible for the generation of Fano
resonances in the magnetoconductance. These results bring
interesting lights in the study of electronic magnetotransport
through antidot lattices.

This work is organized as follows, in the next section we
introduce the system of antidot lattice together with a brief
overview of the mathematical method used in our simula-
tions. In Sec. III, we analyzed the antidot lattice effects over
the conductance maps of the system. We focus basically in
two phenomena, the closing and crossover of states and the
transverse and longitudinal couplings between the induced
OQDs of the system. In Sec. IV, we continue our analysis by
considering the effects of the QPCs widths variation in the
conductance maps profile of our system. Finally, in Sec. V, a
summary of our results concludes the work.

II. MODEL

We start our model considering a two-dimensional dis-
cretization of a QW. The QW region S has a 80�200 tight-
binding lattice sites with an uniform magnetic field applied
perpendicular to the QW plane, Fig. 1�a�. The tight-binding
lattice represents the discretization of the continuous behav-
ior of the envelope wave function of the electrons in the
two-dimensional electron gas. To verify if the considered dis-
cretization is suitable for studying the mesoscopic effects of
our work, we have also experienced with smaller �60�170
tight-binding sites� and bigger �100�230 tight-binding sites�
lattices and we obtained similar results. In Fig. 1�b�, an an-
tidot lattice of area S� �covering 80�120 tight-binding sites�

is built inside the region S. Each antidot has the following
features: �i� a sharp square shape with size equal to 6a�6a,
with a=20 Å being the discretization parameter used in our
tight-binding lattice and �ii� a potential height Va variable
from 0 to 0.5 eV. This simple system contains all the neces-
sary elements �induced OQDs and QPCs� to study the inter-
ference effects that generates crossovers and closings of the
induced OQDs states as a function of the applied magnetic
field. The region S� �containing the antidot lattice� is attached
to the electron reservoirs at each side using QPCs connectors
of variable width w, 20a�w�80a. In Fig. 1�b�, a 6�4
square antidot lattice is considered inside the OQD. Inside
the OQD region, the antidots generate smaller OQDs that can
be transversally coupled �continuous lines� or longitudinally
coupled �dashed lines� by the induced QPCs �small circles�.
The width of the induced QPCs is the distance �transverse or
longitudinal� between the antidots, i.e., w�=14a. Under these
conditions, the quantum transport through the system is con-
trolled by the coupling between the induced OQDs, the con-
tinuous bands of the induced QPCs, the electronic states re-
lated to the reservoirs QPCs of width w, and the applied
magnetic field that modulates the couplings between the
electronic states of the induced OQDs and QPCs.

In order to test our numerical code, we have calculated a
longitudinal conductance map, i.e., longitudinal conductance
vs energy of incident electrons vs applied magnetic flux, of a
system with Va=0 eV and w=80a �a straight QW without
antidot lattice�. The results are presented in Fig. 2�a�. In this
figure, the lighter �darker� region corresponds to the maxi-
mum �minimum� conductance of 5�2e2 /h �0�. At each pla-
teau, the conductance rises 2e2 /h. In the inset of Fig. 2�a�, a
conductance map shows the typical behavior of the host
tight-binding lattice, a Hofstadter butterfly. In this work, we
are interested in the limit of low energies �E�7 meV� and
low magnetic fluxes �� /�0�1�10−3 , �0=h /e , �=Ba2�.
In Fig. 2�a�, we can clearly see the quasi-Landau levels being
perturbed by the transverse confinement of the QW. For low
magnetic fluxes, the conductance map curve differs from
their typical linear behavior, see, for example, the first and
second quasi-Landau level for � /�0�0.5�10−3. For larger
fluxes, the linear behavior of the firsts Landau levels is re-
covered. This can be observed using a smaller scale in the
inset of Fig. 2�a� for 1�10−3�� /�0�0.05, not shown here.

Note that a discontinuity in the potential between the re-
gion S and the leads is produced due to the magnetic field
present only in S. This discontinuity was took into account in
our numerical simulations. However, in the limit of low en-
ergies and low applied magnetic fields considered in this
work, the quantum confinement in the system is mostly gov-
erned by the QPCs electrostatic potentials and the antidot
lattice rather than the magnetic field. This will be seen
through the paper in the relation between the geometry of the
electrostatic confinement and the number of transverse band
and longitudinal states. The spurious effects caused by the
magnetic step inside our system were also minimized by
considering a suitable length L between the QPC and the
semi-infinite leads without compromising the computational
time cost. For this work, we consider L equal to 20 tight-
binding discretization sites.

The method used in our simulations consists of a hybrid-
ization between the self-energy technique33,34 and the recur-

FIG. 1. �Color online� �a� Schematic of the system. In yellow
the quantum wire region S with a discretization �dots� of 80�200
tight-binding sites. In red the left and right reservoirs. The magnetic
field perpendicular to the plane is uniformly applied over S. �b� The
rectangular region S� �central part� with an antidot lattice is located
over the region S and coupled to the reservoirs using QPCs of
variable with w. The antidot lattice-induced OQDs �big circles� and
QPCs �small circles�. The black squares refer to regions with high
potential barriers.
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sive Green’s function method.35–37 In the first part of the
method, the total Hamiltonian of the system HT �the region
S� is written as a function of the Hamiltonians Hmm of each
transverse chain in which the system is divided, together
with the self-energies �L and �R to include the effects of the
left and right leads on the cavity. We consider a system com-
posed by M�m=1,2 , . . . ,M� transverse chains with N sites
each �p=1,2 , . . . ,N�. The magnetic field is included by
means of a Peierls substitution using the Landau gauge,
which is a common procedure in literature.25,38 The total
Hamiltonian in the subspace given by m can be written as

HT =�
H11 + �L Vx 0 0 . .

Vx H22 Vx 0 . .

0 Vx H33 Vx 0 .

. . . . . .

. . . . . .

. . . . . HMM + �R

�
�2.1�

in which the longitudinal hopping submatrices Vx and the
transverse chain Hamiltonian Hmm are expressed in the sub-
space p. In this representation, the submatrices Vx are diag-
onal with elements given by �p�Vx�p	=vx=−�2 / �2m�a2� with
m� being the effective mass. The self-energies are expressed
as �L�E�=Vx

†gL�E�Vx and �R�E�=Vx
†gR�E�Vx, where gL and

gR are the Green’s functions for the isolated lead contacts
given by �E−HL�gL�E�=I and �E−HR�gR�E�=I, with E the
energy of the incident electrons, HL �HR� the Hamiltonian of
the semi-infinite left �right� lead and I the unitary matrix.
Explicit expressions for gL and gR are shown in Ref. 33.
Each transverse chain Hamiltonian Hmm is described by

Hmm = Hm�B� =�
�1

m vy 0 0 . .

vy �2
m vy 0 . .

0 vy �3
m vy 0 .

. . . . . .

. . . . . .

. . . . . �N
m

� , �2.2�

where �p
m=2�2 / �m�a2� is the site energy. The transverse

hooping energies vy using the Landau gauge A= �0,−Bx ,0�
become25

vy = �vx�exp�i2�p�/�0� . �2.3�

The above representation allow us the use of conventional
recursive Green’s function methods for calculating the trans-
mission probabilities through the system. This method has
already been described throughout the literature and has been
applied in a variety of problems in the context of mesoscopic
systems.36,37 For the sake of clarity, we briefly sketched it
below.

To calculate the conductance through the system, we must
construct from HT the Green’s functions GT and GR that are
related to the transmission and reflexion amplitudes of the
incident wave functions, respectively. This is accomplished
by means of a recursive procedure based on the Dyson equa-

tion. This procedure unable us to successively couple the
individual transversal chains in which the system was di-
vided. Starting from the Dyson equation, we can obtain36

two recursive numerical relations for the Green’s functions
GR and GT given by

GT = GTVx�I − GjVxG
RVx�−1Gj �2.4�

and

GR = �I − GjVxG
RVx�−1Gj , �2.5�

where j=M −1, M −2, . . . ,1, and Gj is the corresponding
Green’s function for an individual transverse chain obtained
from

Gj�E,B� = ��E + i	�I − Hj�B��−1, �2.6�

when 	→0.

FIG. 2. �a� Longitudinal conductance map for a QW without
antidot lattice and w=80a �straight QW�. We see the quasi-Landau
levels being perturbed by the transverse confinement of the QW. In
the inset, a conductance map shows the typical behavior of the host
tight-binding lattice, a Hofstadter butterfly. �b� A typical longitudi-
nal conductance profile. Different peaks in width and intensity are
observed in the region of both low-energy and low applied mag-
netic flux.
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The starting point of this iterative procedure is the cou-
pling between the Green’s function of Eq. �2.6� of the trans-
versal chain at the right side of the structure, i.e., r=m=M,
GM = ��E+ i	�I−HM�B�−�R�E��−1, with the j=M −1 chain
given by GM−1= ��E+ i	�I−HM−1�B��−1. Note that we have
already included the contribution of the right semi-infinite
lead inside GM. As the starting condition for the iterative
procedure, we have considered that GR=GT=GM. Using the
recursive relations of Eqs. �2.4� and �2.5�, the function GM
can be coupled to the chain j=M −1 resulting in a new pair
of functions 
GR ,GT�. These new functions can be used in
the next iteration to couple the j=M −2 chain to the previous
ones. Following this procedure all the individuals chains can
be successively coupled to each other until we reach the
transversal chain at the left contact, i.e., l= j=1 and G1
= ��E+ i	�I−H1�B�−�L�E��−1. Note that, as before, we have
included the self-energy of the lead inside G1.

After the recursive procedure is complete, the final
Green’s functions GT and GR can be used to calculate the
transmitted and reflected amplitudes as

t
,
��E,B� = i2�vx��sin �
� sin �


� exp�i��
l − �
�r��G
,
�
T �E,B� �2.7�

and

r
,
��E,B� = i�sin �
�

sin �


exp�i��
 + �
��l�

� �2�vx�sin �
G
,
�
R �E,B� + i�
,
�� �2.8�

with 
 and 
� equal to the entrance and exit transverse mode,
respectively, and G
,
�

R�T�=U†GR�T�U, with U being the unitary
transformation from the sites to the transverse-mode repre-
sentation. The function �
�
�� is defined as

�
 = cos−1
E − E


2vx
+ 1� �2.9�

with

E
 = 2vx − 2vx cos
 �


N + 1
� . �2.10�

Finally the longitudinal conductance through the system is
calculated using the Landauer-Büttiker formula given by

G�E,B� =
2e2

h
�

�

N 
�



N

�t
,
��E,B��2� , �2.11�

where the sum is performed considering all the available
modes 
 and 
� of the system. The number 2 in Eq. �2.11�
accounts for the spin degeneracy.

In this work, we have simplified our system using a
square lattice with sharp square antidots. The use of this
simple model is justified because the qualitative effects that
can be observed in real systems, for example, the relation
between the conductance and the crossovers and closings of
states induced by the applied magnetic field, do not change
with the choose of a more realistic confinement potential
�soft potential�. In Fig. 2�b�, we show a typical longitudinal

conductance profile, G�E�, for a 6�4 antidot lattice with
w=60a, Va=0.5 eV, and � /�0=0.25�10−3. Different peaks
in width and intensity are present, together with a non ex-
pected plateau, forming a set of difficult interpretation. The
purpose of the next sections is to analyze these peaks and
plateaus and their relationship with the crossovers and clos-
ings of states observed in the longitudinal magnetoconduc-
tance maps.

III. ANTIDOT LATTICE EFFECTS

A. Closing of states inside a band

We proceed to discuss the influence of the antidot poten-
tial height Va in the conductance maps. In Figs. 3 and 4, we
shown for w=80a our numerical conductance maps simula-
tions for several values of the antidots potential height,
0.01�Va�0.5 eV, and applied magnetic flux, 0�� /�0
�2�10−3 �0�B�2.1 T�. We can follow the evolution of
the plateaus �bands associated with the quasi-Landau levels�
previously shown in Fig. 2�a� to a set of discrete states. This
discretization is produced by the quantization of the wave
function in both transverse and longitudinal directions inside
the induced OQDs of the system. A perturbative regime of
Va=0.01 eV is enough to modify the QW longitudinal mag-
netoconductance. Note from Fig. 3 that the discretization of
the states are better defined as we increase Va. Also, the
continuous states related to the straight QW case of Fig. 2�a�
are shifted to higher energies, and the discrete states induced
by the OQDs began to interact with upper bands states. As
we increased the antidot confinement potential Va, the OQDs
are more well defined and the induced QPCs create new
continuous longitudinal channels with energy higher than
that of the OQDs discrete ground states. In this way, the
peaks that appear in the longitudinal conductance maps

FIG. 3. Longitudinal conductance maps for different values of
the antidot potential height Va with w=80a for the 6�4 antidot
lattice system. We can follow the discretization of the conductance
bands as we increased Va: �a� 0.01 eV, �b� 0.02 eV, �c� 0.05 eV, and
�d� 0.1 eV. The two lowest transverse bands M1 and M2 are still
visible for potential heights up to 0.02 eV.
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�lighter regions� are the consequence of resonant tunneling
through the quasibound states of the induced OQDs. Note
also that the first transverse mode of the straight QW case of
Fig. 2�a� is very robust and can be clearly seen even for
potentials up to Va=0.1 eV, see mode M1 in Fig. 3. This is a
feature of the QW transverse confinement in low applied
magnetic fields.

In Fig. 4, we show the conductance map where crossover
and closing of states are present. A direct comparison be-
tween Figs. 1�b� and 4 allows the identification of three
bands �B1, B2, and B3� related to the three vertically induced
OQDs in the antidot system. Each one of these transverse
bands has five states which are related to the five longitudi-
nally induced OQDs of the system. In this context, the clos-
ing of states in a given transverse band can be interpreted as
a longitudinal decoupling of the OQDs of the system. How-
ever, notice the existence of a finite longitudinal conductance
greater than one quantum of conductance under this circum-
stance, and not a low conductance �less than or equal to one�
due to the decoupling of the longitudinal OQDs. The high
conductance situation could be explained �a� by a simple
sum of longitudinal spatial channels �when the transverse
spatial channels are uncoupled, as would happen with paral-
lel QPCs �Ref. 39� isolated by a huge potential barrier� or �b�
by a combination of transverse and longitudinal couplings40

that could generate longitudinal transport. The last situation
is likely to occur when potential barriers that uncouples the
induced OQDs in the longitudinal direction are formed in-
side the system due to the applied magnetic field, forcing in
this way transverse couplings. Since we have not observed
an integer quantum of conductance �n2e2 /h ,n=2,3 , . . .� in
the longitudinal decoupling of our system �decrease in split-
ting�, we can discard possibility �a�. This will be further dis-
cussed in the next section.

B. Crossover of states of different bands

In order to discuss the importance of the transverse and
longitudinal OQD couplings in the longitudinal conductance

of the 6�4 antidot system �Fig. 1�b��, we start our analysis
by considering more simpler systems, e.g., Figs. 5 and 6. The
system shown in the inset of Fig. 5�a�, a 6�2 antidot lattice,
does not generate transverse coupling since it is a purely
longitudinal system. We can observed in Fig. 5�a� five bound
states related to the five induced longitudinal OQDs for three
applied magnetic fluxes: 0; 5�10−3 and 9�10−3 �inset�.
Note that longitudinal states of different bands do not
couples even for high magnetic fields �
2.1 T or � /�0

2�10−3�, and their conductances do not exceed a quantum
of conductance. This case is similar to the one of a single
OQD without transverse coupling in which the conductance
of the system, even when crossovers of longitudinal states
occurs, do not generate conductance intensities greater than
one quantum of conductance. This fact could represent a
fingerprint of purely longitudinal coupling. Figure 5�b�
shows that the conductance map for the 6�2 system has a
quasilinear behavior for all states in applied magnetic fluxes
up to 2�10−3, without any presence of crossing and closing
of states. We will see below that this is related to the absence
of transverse coupling.

In Fig. 6�a�, we show the conductance profile of the 6
�3 antidot lattice system for two values of applied magnetic
flux � /�0: 0 �B=0 T� and 1�10−3 �B=1 T�. Intensities

FIG. 4. Longitudinal conductance map for the 6�4 antidot lat-
tice system with w=80a and Va=0.5 eV. The three transverse
bands �each one containing five longitudinal modes� generated by
the antidot lattice are indicated by B1, B2, and B3. The brighter
regions show points of high conductance due to the closing of lon-
gitudinal states and interband crossover.

FIG. 5. �a� Conductance profile of the 6�2 antidot lattice sys-
tem with Va=0.05 eV for three values of magnetic flux � /�0: 0
�dashed line�, 5�10−3 �solid line�, and 9�10−3 �inset curve�. �b�
Conductance map profile showing the five longitudinal states for
fluxes up to 2�10−3. Note the conductance quasilinear behavior of
the system.
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greater than one and less than two quantum of conductance
are observed in both cases. In Fig. 6�b�, we see that for
certain values of applied magnetic field, it is possible to dis-
tinguished two bands, B1 and B2 with five longitudinal states
each, generated by the induced transverse OQDs of the sys-
tem. In some regions, the longitudinal states of the two bands
suffer couplings between transverse bands generating higher
conductance intensities �lighter regions�. This fact can be
interpreted as a fingerprint of transverse coupling between
the induced OQDs.

In general, an increase in the conductance is observed in
two situations: �a� when some of the longitudinal states in-
side a band couples with states of different transverse bands
�crossovers� and �b� when the longitudinal states uncouples
�closing of the band�. A direct comparison between Fig. 5
and 6 allows us to relate all the previous situations to the
transverse couplings between induced OQDs. We expect in
case �b� a decreased in the conductance �G�E��1�, however
we observed in our calculations an enhancement in G�E�.
This fact indicates that the transport is favored by the open-
ing of spatial transverse channels. We can see from the center
peak of Fig. 6�a�, for � /�0=0, that a simple sum of spatial

channels will double the conductance, which is typical in
systems with degenerate states. This happens as a conse-
quence of the sum of two longitudinal states of different
uncoupled transverse bands for the given energy and mag-
netic field �B=0 T�. After the magnetic field is applied, an-
other crossover between the same states occurs. In this situ-
ation, the magnetic field couples the induced OQDs of the
system as we have 1�G�E��2 quantum of conductance.
Anticrossovers are also observed between states of different
bands for other values of the applied magnetic field and en-
ergy �see, for instance, Fig. 6�b� at � /�0�0.42�10−3 and
E�3.5 meV�. The intensity here is one quantum of conduc-
tance for each state. We interpret this behavior as a longitu-
dinal couplings between the induced OQDs.

We have not observed, after the application of a magnetic
field, conductances equal to or greater than two quantum of
conductance in our simulations of the 6�3 antidot lattice
system. Nevertheless, the transverse interference effects
modulated by the magnetic field are responsible for the en-
hancement of the conductance in the closing and crossover
regions. In the extreme case of high magnetic fields, we ex-
pect that the transport through the system to be controlled by
the magnetic border states.

Finally, we see from Fig. 6�b� that the two higher energy
states of the upper band suffer a closing and remain sepa-
rated from the rest of the band. The conductance intensity in
this situation is enhanced, as we can see from Fig. 6�a�, by a
transverse coupling that mixture longitudinal and transverse
spatial channels in the antidot lattice. A similar situation is
observed for the two lower energy states of the bottom band.
Here again, the higher conductance can only be explained by
transverse coupling between the induced OQDs.

We are now able, after the previous systematic analysis, to
interpret the results of our original 6�4 antidot lattice sys-
tem which are shown in Fig. 7�a� for Va=0.5 eV, w=80a,
and two values of applied magnetic field, B=0 T and B
=1 T. The figure compares the conductance map of Fig. 4
with his conductance profile G�E� for the given parameters.
We emphasize the correspondence between the figures. In
this system, we observed the definition of three transverse
bands, i.e., B1, B2, and B3. The central band B2 at B=1 T
clearly shows the five longitudinal states with intensities of
one quantum of conductance each. This suggests that the
states are pure longitudinal with no transverse couplings with
the bands B1 and B3 �solid line�. Each one of the other two
bands, B1 and B3, present closing of the states �splitting de-
creased� and intensities higher that one quantum of conduc-
tance. This can be explained by a transverse coupling be-
tween the induced OQDs of the system. The fact that the
high intensity is less than two quantum of conductance en-
sures the presence of interference effects, and indicates that
the conductance is controlled by transverse transport chan-
nels of the induced OQDs.

To finalize, let emphasize that transverse coupling effects
can also be obtained by modifying the antidot confinement
potential height in the presence of a constant applied mag-
netic field. In Fig. 7�b�, we show how the conductance pro-
file of Fig. 7�a� is modified when we shift the potential
height from 0.5 to 0.05 eV. Note that this action produces
similar effects than the variation in the magnetic field, i.e.,

FIG. 6. �a� Conductance profile of the 6�3 antidot lattice sys-
tem with Va=0.05 eV for two different values of applied magnetic
flux � /�0: 0 �dashed line� and 1�10−3 �solid line�. Intensities
larger than one quantum of conductance appear as a consequence of
transverse couplings. �b� Conductance map profile showing the two
transverse B1 and B2 bands with five longitudinal states each for
magnetic fluxes up to 2�10−3. The crossing and closing of the
bands occurs at certain values of the applied magnetic field.
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changes in the transverse couplings of the system. As an
example, the higher energy state of the B2 band couples with
the B3 band modifying its intensity to a value greater than
one quantum of conductance.

IV. QUANTUM POINT-CONTACT EFFECTS

The effect of the QPCs width w variation �Fig. 1�b�� that
connect the 6�4 antidot lattice with the reservoirs is dis-
cussed. In Fig. 8�a�, we show our conductance map simula-
tions for w=80a, 60a, and 20a. We observed in all cases the
previously defined transverse bands B1, B2, and B3. A non-
expected situation for the w=60a case is observed, a broad-
ening of the resonance lines of the upper band B3. In the
broadening region, the conductance intensity is approxi-
mately constant �one quantum of conductance� forming a
conductance plateau B3c allowing the system to behave as a
QPC. This situation is shown in Fig. 8�b� for � /�0=0.25
�10−3 �dashed line� in the range from 5 to 6 meV. The role
of the transverse couplings in the formation of the B3c band
will be discussed at the end of this section.

As we decrease w from 80a to 60a, we observed an in-
crease in the conductance �see Fig. 8�c�� in the B3 band at the
closing region of Fig. 8�a�I and II for � /�0=1�10−3. Simi-
lar behavior was observed in the crossover region at � /�0
=0.25�10−3. The enhancement of the conductance can be
associated to the appearance of the induced continuous band
B3c that is added to the previously existed discrete channels.
This can be seen in Fig. 8�a�II where a well-defined white
line �higher energy state of the B2 band� in the overlap region

FIG. 7. �Color online� �a� �Color online� A comparison between
the conductance map of Fig. 4 and the conductance profile G�E� of
a 6�4 antidot lattice for two applied magnetic field B=0 T
�dashed line� and 1 T �solid line�. We observed the correspondence
between both figures delimited by the red �B=1 T� and green �B
=0 T� lines. Three well-defined transverse bands appear in the sys-
tem. �b� Conductance profile considering a low antidot potential
height for � /�0=0 �dashed line� and � /�0=1�10−3 �solid line�.

FIG. 8. �a� Conductance maps for Va=0.5 eV and different val-
ues of the QPCs width w: �I� 80a, �II� 60a, and �III� 20a. �b�
Conductance profile at � /�0=0.25�10−3 for two values of QPCs
width. �c� Conductance profile at � /�0=1�10−3 for several values
of QPCs width.
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with the continuous band B3c does not present Fano reso-
nances, clearly suggesting a channels sum. These processes,
conductance enhancement and increase in the linewidth, are
in contrast with those found in single OQDs for low energies
or quantum billiards for high energies.

In Fig. 8�b�, the decrease in the QPCs connectors to w
=20a generates Fano resonances and a decrease in the con-
ductance at the crossover regions. The Fano resonances can
be explained by the coupling between the continuous B3c
band and the available discrete states. In Figs. 8�b� and 8�c�,
we observed that in the regions in which G�E� has a quantum
of conductance for the w=60a case, the decreasing to w
=20a creates thinner resonant lines, that is the expected re-
sponse of the system. However, in the regions where the
intensity was greater than one quantum of conductance, Fano
resonances were observed. Note that these regions are the
crossovers of Fig. 8�b� and the closings of Fig. 8�c�, both
related to transverse couplings. Moreover, Fig. 8�c� also pre-
sents what it seems to be a Fano resonance in the energy
range of 5–5.5 meV. This resonance can not be explained in
first approach by a continuous band since no continue band
was observed in that region. However, in the forthcoming
paragraph we will see that Fano resonances can occur even
with a single conductance peak if its width grows sufficiently
enough to behave like a continuous band. In general, trans-
verse couplings are always generating high conductance in-
tensities. For the low magnetic-flux situation, this can be
understood as a crossing between different bands of longitu-
dinal states or transverse couplings between induced OQDs.
For the case when closing occurs, a qualitative explanation
had been previously discussed in this work. In the w=60a
situation, the transverse coupling modulate the generation of
the continuous B3c band that are favored by the specific po-
sition of the QPCs connectors. Other QPCs configurations
can, in principle, induce the formation of new continuous
bands B1c or B2c.

To verify the above ideas and the existence of the con-
tinuous band B3c and their relationship with the transverse
couplings, we will use Fig. 9. In this figure, we consider a
2�4 antidot lattice system that only support transverse cou-
plings between the induced OQDs �inset of figure�. We ob-
serve that for w=80a and without magnetic field �black line�,
a splitting in the conductance profile related to the three in-
duced OQDs appears, each one associated to the B1, B2, and
B3 bands previously seen in Fig. 7�a� at � /�0=1�10−3. The
transverse coupling between the induced OQDs generates a
conductance intensity greater than one quantum, contrary to
the case of Fig. 5�a� when we consider purely longitudinal
couplings. This important fact gives us a clear fingerprint of
transverse coupling.

Figure 9 shows that an applied magnetic field of B=1 T
and 80a �blue line, the second one from top to bottom at
3 meV� generates a decrease in the conductance intensity,
nevertheless we still have conductance intensities greater
than one quantum of conductance, a manifestation of pure
transverse coupling. We continue the system analysis by de-
creasing the QPC to w=20a in the presence of the applied
magnetic field �red line�. Three major effects were observed
after this process: �i� reduction in the linewidth for the two
first peaks, �ii� Fano resonance at the center region, and �iii�

increase in the linewidth of the higher state. Note the impor-
tance of the third case which is responsible for the formation
of the continuous band B3c discussed before. The higher state
couples with the central state generating an asymmetric Fano
resonance �inset of figure�. Finally, when the magnetic field
is suppressed �green line�, the central state disappears and
form a pronounce dip �inset of figure� that indicates a trans-
verse uncoupling with the others OQDs of the system. In
general, the QPCs localization can be used to manipulate the
transverse couplings inside the system �with a possible per-
mutation of the effects between the states� with the help of
an applied magnetic field. In this sense, the closing regions
of the bands intrinsically support continuous channels that
can be coupled to discrete states, generating in this way the
Fano resonances. This gives a reasonable explanation for the
Fano resonances found at the closing region of the B3 band
in Fig. 8�c�.

V. CONCLUSIONS

In summary, we have discussed the evolution and han-
dling of crossovers and closings of states observed in longi-
tudinal conductance maps of a antidot lattice within a OQD
when the antidots potential and the QPCs connectors width
are modified. A systematic study of the relationship between
the intensity of the longitudinal conductance and the cross-
overs and closings of the magnetic states leads to the deter-
mination of transverse couplings between the OQDs induced
by the lattice. These transverse channels, modulated by the
magnetic field, can contribute greatly to the longitudinal
transport through the system.

FIG. 9. �Color online� Conductance profile for a 2�4 system
with Va=0.5 eV in which transverse couplings are the only ones
supported. Different configurations were tested: without magnetic
field and w=80a �black line�, with an applied magnetic field of B
=1 T and w=80a �blue line�, with an applied magnetic field of B
=1 T and w=20a �red line� and without magnetic field and w
=20a �green line�. In the inset, we show in logarithmic scale the
formation of an asymmetric Fano resonance �red line�, and the for-
mation of a pronounce dip �green line�. The last one being a typical
manifestation of transverse uncoupling in the system.
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In systems that can provide transverse couplings, the con-
ductance map will not be linear and the conductance maps
show transverse bands of longitudinal states, each band re-
lated to a transverse induced OQD in the system. At the
closing and crossover regions, the intensities in our conduc-
tance maps present noninteger quantum values �but greater
than one� of conductance. This indicates a coupling between
states and not a simple sum of noncoupled channels. We can
generate this coupling by inducing transverse OQDs in the
system.

We have identified the closing of the bands as a finger-
print of decoupling between longitudinal states of a given
band and the high intensities as transverse coupling between
the induced OQDs. This conductance maximum can be used
as a valuable fingerprint of transverse couplings, which can
serve to control the electronic transport properties. This ef-
fect can be clearly observed and measured in experiments
concerning G�E ,B�.

Our results could also be observed in typical experiments
with hundreds of electrons participating in transport. In this
situation, the perturbative mean-field effect overcome the
electron-electron interaction favoring the single-particle
picture.41,42 However, the Coulomb interaction in low
electron-density regime can introduce another fingerprints in
the magnetoconductance.43,44 In this situation, the modula-
tion of the QPCs connectors width would play an important

role. Further research in this direction are necessary.
The effects of the transverse coupling in our system can

be manipulated by the applied magnetic field, the antidot
potential height and the QPCs connectors position and width.
Changing the connectors width and positions, we were able
to create a new continuous band or plateau inside a trans-
verse band that generates Fano resonances. Also, we man-
aged to fully uncouple a OQD for the rest of the system. This
effect can be used, in principle, to selectively uncouple one
OQD to control the electronic transport through the system.
Note that the effects reported in this work can be observed in
samples in which the antidot lattice is built in a regular way.
If the antidots potential heights are different, the interference
effects between the available electronic state could perturbed
some of the features reported in this work, nevertheless the
conductance maps will be qualitatively similar. We think that
this work improves our understanding of electronic transport
through antidots lattices.
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